(08 Marks)

nozzle.

USN

Fifth Semester B.E. Degree Examination, Dec.2013/Jan.2014 Aircraft Propulsion

711.01.01.11.1.0pu.10.10.11	
Time: 3 hrs. Max. Marks: 10	
	Note: Answer FIVE full questions, selecting
-5	Note: Answer FIVE full questions, selecting at least TWO questions from each part.
19	,
PART – A	
1 a.	Explain the principles of aircraft propulsion and list down the general classifications power
	plants used in flight vehicles. (05 Marks)
b.	· A i
	heat conduction equation. (10 Marks)
c.	
	insulated with a material having an average thermal conductivity of 0.3W/m°K. Inner and
	outer surfaces temperatures are 1000°C and 10°C. Heat transfer rate is 1400W/m ² . Calculate
	the thickness of insulation. (05 Marks)
2 a.	
	equations for a turboprop and turbofan engines (06 Marks)
b.	
	its advantages and disadvantages. (07 Marks)
C.	
	speed of 525 kmph. The data for engine is given below:
	Diffuser efficiency = 0.875
	Isentropic efficiency of compressor = 0.79
	Velocity of air at the compressor = 90m/sec
	Temperature rise through the compressor = 230°C
	Temperature, pressure and density at 3000m altitude are 268.65°K, 0.701 bar and 909 kg/m ³
	respectively. Properties of air: $\gamma = 1.4$, $C_p = 1.005$ kJ/kg K. Calculate the pressure rise
	through the diffuser, pressure ratio developed by the compressor, power required by the
	compressor and the air standard efficiency. (07 Marks)
3 a	
	i) Supersonic inlets.
	Factors affecting diffuses performance.
, ,	(10 Marks)
- 3.	Derive a relation for minimum area ratio $\left(\frac{A_{max}}{A_i}\right)$ min in terms of external declaration $\frac{u_i}{A_i}$
, * 0	Derive a relation for (minimum area valve (A ₁) min in terms of statement area.
	and also explain with relevant graphs. (10 Marks)
	und diso explain with felevant graphs.
4 a	What are the classifications of combustion chamber, explain with neat sketches. Discuss
	their advantages and disadvantages. (06 Marks)
b	
Ū	i) Flame tube cooling.
	ii) Use of cheaper fuels.
	iii) Pollution. (06 Marks)

What are the functions of exhaust nozzle and explain over expanded and under expanded

PART - B

- 5 a. Draw a schematic diagram of a centrifugal compressor and obtain an expression for work done and pressure rise. (08 Marks)
 - b. Define degree of an reaction for an axial flow compressor and obtain the expression for 50% degree of reaction. (06(Marks)

A 10 stage axial flow compressor provides an overall pressure ratio of 5:1 with an overall isentropic efficiency of 87%. When the temperature of air at inlet is 15°C. The work is equally divided between the stages. A 50% reaction is used with a blade speed of 210 m/s and a constant axial velocity of 170 m/s. Estimate the blade angles. Assume a work done factor = 1.

- 6 a. Draw the relocity triangles of a single stage turbine and derive the expression for work output.

 (10 Marks)
 - b. A multistage gas furbine is to be designed with impulse stages, and is to operate with an inlet pressure and temperature of 6 bar and 900K and an outlet pressure of 1 bar. The isentropic efficiency of the turbine is 85%. All the stages are terhave a nozzle outlet angle of 75° and equal outlet and inlet blade angles. Mean blade speed of 250m/s and equal inlet and outlet gas velocities. Estimate the maximum number of stages required. Assume $C_p = 1.15 \text{ kJ/kg}$ K, $\gamma = 1.333$ and optimum blade speed ratio. (10 Marks)
- 7 a. Draw a schematic diagram of a SCRAMJET engine. Explain its performance characteristics and indicate its advantages and disadvantages. (10 Marks)
 - b. Explain the subcritical, critical and supercritical operation of combustion in ramjet engine.
 (10 Marks)
- 8 a. Draw a schematic diagram of a liquid propellan ocket. Explain its principle of operation and discuss its advantages and disadvantages. (10 Marks)
- b. Describe the concept of multistaging of rockets and indicate different types of multistaging with neat sketches and derive a relation for terminal velocity of multi stage rocket. (10 Marks)
